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Solution of Linear Systems by a Singular Perturbation Technique

MARK D. ARDEMA

Ames Research Center

Abstract—An approximate solution is obtained for a singularly perturbed

system of initial-valued, time-invariant, linear differential equations with

multiple boundary layers. Conditions are stated under which the approximate

solution converges uniformly to the exact solution as the perturbation param-

eter tends to zero. The solution is obtained by the method of matched asymp-

totic expansions. Use of the results for obtaining approximate solutions of

general linear systems is discussed. An example is considered to illustrate

the method and it is shown that the formulas derived give a readily computed

uniform approximation.

I. INTRODUCTION

Linear systems of ordinary differential equations frequently occur in

applications of control theory. Although the general solutions of such

systems are well known, the computation of solutions for specific systems can

be laborious if the order of the system is high. In applications in which it

is desired to keep computational effort low and in which extreme accuracy is

not required, it is appropriate to seek approximate solutions. The approxima-

tions that result in the greatest simplification are those in which derivative

terms are neglected. Singular perturbation theory provides a systematic way

of studying such approximations and coping with their shortcomings.
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Before proceeding, some notation will be introduced. Given an n X n

matrix A with elements aij and an n-dimensional vector x with components

xi we define

BAR matrix formed by taking 
ith 

through jth rows of A and kth

through 
ith 

columns

ix = vector formed by taking ith through jth components of x

We note that iAj - a ij , 1A1 = A, ix = xi , and nx - x. The determinant of

iAR will be denoted jDk. The following identity is true for i = 1, •••,

n - 1 and will be needed subsequently:

iDi = i+1Di+1^a - iAi+l
('+lA

i+ll-1 i+l
Ai^ 	 (1.1)nn	 nn	 ii in 	 nn J	 ni

We are now ready to formulate our problem. Consider the rtth order system

E 
ix= 

Ax; x(0) = xo	 (1.2)

where A is a constant matrix and E is a matrix with components e ij such

that

eij	 0; i x j

e 	 1	 1, 2, •••, m	 (1.3)

eii = Ei-m; i - 
m + 1, •••, n

where E is a small parameter. Although the system (1.2) has a rather special

form, its solution may be used to obtain approximations to more general systems,

as discussed in section IV. Assuming n to be large, it is our goal to obtain

an approximate solution to (1.2).

Since a is small, it is natural to seek an approximate solution of

(1.2) by setting E = 0. The resulting system is

2	 '! ' ,(^DUC;II>ILI'IY Ul' Thl.
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d 1 
0

	

mx	l l to	
1
A
m+1m+10 1	 1

	

dt	 m m mx + m 	 nx ' mx(0) mx0

m+10 . m+1A1 1X + m+lAm+1 m+lx0

	

n	 n m m	 n n	 n

and is called the reduced system. We call the components of 1x the "slow"

variables and those of 
m+

nx the "fast" variables. It is obvious that, in

general, the solution x0 (t) of the reduced system will not satisfy all of

the initial conditions and thus, at least locally, the behavior of the solution

of the reduced system will be radically different from the solution of the

exact system x(t). For this reason, we call (1.2) a singularly perturbed

system. The best that can be hoped for is that 
1 
x o is a good approximation

of 
M 
x uniformly in the domain of interest and that 

m+
nxo is a good ap-

proximation of m+1x everywhere except near t = 0. The conditions under

which this is true will be established subsequently.

Singular perturbation theory is concerned with the relation between the

solutions of the exact and reduced systems of singular perturbation problems

and with constructing asymptotic series representations of the solution of

the exact system. The fundamental results of the theory are due to Tihonov

[1] and Vasileva [2]. Reviews of singular perturbation theory and methods

are found in the books of Wasow [3] and O'Malley [4]. Singularly perturbed

linear systems have been studied by several authors [c.f. 51.

In the present treatment, solutions are developed by application of the

method of matched asymptotic expansions. This method has been developed to

solve certain fluid mechanics problems involving nonlinear partial differen-

tial equations. Expositions of the method are given by Cole [6], Van Dyke

[7], Nayfeh [8], Eckhaus [9], and Ardema [10]. In the MAE method, boundary-

layer systems are introduced to account for the nonuniform approximation in

the fast variables. Due to the special nature of E, there will be n - m

(1.4)
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boundary layers for the system (1.2). In effect, each boundary layer, except

the n - mth , will be a reduced solution for the next boundary layer. Such

systems of multiple boundary layers have been considered by Calise [11, 121.

The reduced and boundary-layer systems are solved by asymptotic expansion

methods. The solutions of these systems, which must be asymptotically stable,

are then "matched" with the solutions of the reduced problem. Finally, a

composite solution which gives uniform approximation in all variables is

formed. In the current application, we are interested only in the zeroth

order terms of the expansions and for this case the MAE method assumes a

particularly simple form.

II. THE MAIN RESULT

Theorem

Consider the system (1.2) and suppose that

i+n i
(-1)	 iD < 0; i = m + 1, •••, n	 (2.1)

n n

Then

	

1x(t) - lx°(t), < 1 0(E) b t E [0, T] 	 (2.2)
M	 m	 in

^"+nx(t) - 
M+

nxo ( t)+ < 
M+n0(E)v t E(0, T)	 (2.3)

IM+1 X(t) - m+nxo (t) - m+nxb(t)I 
< 
M+

n0(E)d t[0, T]	 (2.4)

where x(t) and x o (t) are the solutions of (1.2) and (1.4), respectively,

0(E) is a vector, each of whose components is of order E, T is an arbitrar-

ily large but finite constant, and m+1xb (t) is the boundary-layer correction

derived in the following section.

Equations (2.2) and (2.4) express uniform convergence and (2.3) expresses

nonuniform convergence. Equation (2.1) ensures asymptotic stability of the

4



nonlinear case, an additional hypothesis is needed to guarantee that the ini-

tial conditions are in the domain of influence of the stable equilibrium

point.)

From (2.2) through (2.4) we note that if we are interested only in the

behavior of 1x (t), or in the behavior of ^nx(t) at large t (as compared

with E), or both, then xo (t) will be a good approximation; it is only if

the behavior of 
m+

nx(t) for small t is of interest that the boundary-layer

corrections A1+nxb (t) need be computed. We also note that in the special case

m+l m+l
that	 nAn	 is diagonal, then ( 2.1) requires the diagonal entries to be

negative.

The theorem may be generalized in several ways. For example, it holds

if the elements of E are defined by

ei j	 0; 1 x j

eii = 1; i s m	 (2.5)

lim ei+l,i+1(E) a 0; i > m
E-*0	 eii (E )

The special form of E as given by ( 1.3) is used solely for convenience. The

results may also be generalized to the case where A is a function of E and

t. In this case, we assume that A ( E,t) has an asymptotic power series ex-

pansion in E and write:

ACE, t) - A O ( t) + A I (t ) E + A2 (t)E 2 + • ..

where the Ai (t) are assumed continuous. In fact, because only the zeroth

order terms of the expansions are computed, the results obtained here apply

directly to the case where A is time-invariant but depends on E; we need

only replace A by A  in the final formulas. The t ime-invariant case was

adopted only to simplify the algebra.

1'!1'j N fl )UGIBII,I Y OF THE
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Although the theorem may be derived as a special case of more general

results [c.f. 51, it is instructive and perhaps easier to pursue a direct

proof of the theorem. In the following section we will prove the theorem and

obtain an explicit representation for m+l xb W. The main task is to show

that the boundary layers are asymptotically stable. As mentioned earlier,

the analysis will employ the MAE method.

III. ANALYSIS

First consider the reduced system (1.4). Strictly speaking, this system

(also called the outer system in the MAE method) is not required to satisfy

any boundary conditions but rather has its constants of integration determined

by matching with the first boundary layer. However, for the zeroth order,

this matching simply states that the constants of integration are to be deter-

mined from 
1
x°(0) = lx [c.f. 10]. By (2.1), 

m+1Am+1 
is nonsingular so that

m	 m o	 n n

the solution of (1.4) may be written

lx° = exPj (
lAl -  l Am+l Im+lAm+1	 m+lAll t}lx

m	 mm mr. 	 nn JJ	 nmJJ 
1 m 

m+lo	 - rm+l m+ll -1 
m+'
 
A l
	 1(1 1 1 m+l rm+l m+ll " 1 n.+1 1^	 1

x	 A	 J	 A exp11 A- A	 l	 A	 J	 A	 t	 x (3.1)
n	 nn	 nm	 mm mn	 nn	 nm	 Sao

I

In particular,

1xo(0) = 1x0

m+1xo (0) _ - rm+l A7+1l -1 m+1A1 lx

n	 n n I	 n m m o
(3.2)

Now consider the first boundary layer. The zeroth order term in the

solution to this system is obtained by transforming the independent variable

to Tl	 E in (1.2) and taking the limit E - ► 0. Denoting the dependent vari-

able by x l (t), this function satisfies
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11

ddT - m0; mxl(0) - mxo
1

m+l 1
d
m+lx
	-

m+1 1 1 1	 m+1 m+l
+

m+l 1	 m+l m+2 m+2 1	 m+l 1	 r+l
+	 (0) -d T 

1
m+l m mx m+lAm+l m+lx m+lAn	 n 	 ; m+l x 	m+lxo

m+2- m+2 1 1 1	 m+2 m+1
+

m+l 1	 m+2 m+2 m+2 1
+	

(3.3)
n0 n m mx nAm+l m+lx n n	 nx

Since	
m+2An+2	

is nonsingular, the solution of this system is

1 1	 1
x - x
m	 m o

m+l m+l
m+l 1 -

 (m+l x
m+l11lnDn_m+l 1 1

m+lx	 m+lo + m+1 Km mxo 
exp 

m+26m+2 T 1	 m+1Km mxo
n n

m+2x1 - _(m+2Am+21 -1 (m+2A1 _ m+2 m+1 m+lKlllx
n	 ll nn 11	 tt n 	 nm+lm+l m))mo

m+l
D
 m+l

m+2 m+l(m+l	 m+l 1 1 l	 nn
+ nAm+llm+lx +o m+1Km mxo) eXp m+26m+2 T1

n n

where (l.l) was used and K is defined as

J+1 
D 
j+1

j Kl 1 -
 [JA1
	 - j Aj+l(j+l Aj+l) -1 j+1A1 l	 nn

j j-	 j j-1
	

j n	 n n J	 n j- 1J	 JDj
n n

(3.4)

(3.5)

By (2.1), we know that the solution of the first boundary-layer equation

x 1 is asymptotically stable. The matching condition of the MAE method re-

quires that the solution of the first boundary-layer equation approaches, as

T 1 i -, the solution of the outer system evaluated at t - 0. The value of

x l as T1 -► m may be found from the equilibrium point of (3.3) which is

1xl(m) - mxo

m+l x l (m) - _(m+l Am+11 -1 m+l Al lx
n	 n n ))	 n m m o

(3.6)
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Comparing ( 3.2) with ( 3.6) we see that the matching condition is satisfied,

i.e.,

x0(0) - xl(-)

and thus the reduced solution evaluated at the boundary is an asymptotically

stable equilibrium point of the first boundary- layer equation, as required.

Next, consider the ith boundary layer 1 < i < n - m. The zeroth order

term of the solution to the ith boundary-layer system is obtained by trans-

forming

Ti i	 (3. 8)
E

wand setting E - 0. Denoting the solution of the system by xi,

1 i

d m+i-1 x 	1	 1 1	 1
d T i 	 s m+i- 10 ' m+i-lx (0)	 m+i-1x0

d
m+i i
m+ix _ m+i 1	 1 1 m+i m+i m+i i m+i m+i+l m+i+l i m+i i 	 m+i
d T i	m+iAm+i-1 m+i-l x + m+iAm+i m+ix + m+i ^n	 nx ' mtix (0)	 m+i x0

m+i+1 0 m+i+lA I	 lxi + m+i+lAm+i m+ixi + m+i+lAm+i+1 m+i+l xi	 (3.9)
n	 n m+i-1 m+i-1	 n m+i m+i	 n n	 n

We see that, in effect, the variables that are slower than 
M++ixi, 

the components

of m+i-lxi, have not as yet had time to move away from their initial values

while those that are faster than 
M+ixi, 

the components of 
m+i+

nxi , have al-

ready left the region of influence of their initial conditions. Proceeding as

before, the solution to this system is



1

I s	 1

m+i-lx 	 m+i-1x0

m+i mti
m+i i	

(M+i
m+i	 m+i 	 1	 nDn	 _ a+i 1	 1

m+ix	x0 + m+i m+i-1 m+i-1x011  exp m+i+le*i+1 T i	 m+iKm+i-t m+i-lxo
n n

m+i+lxi	 (m+i+lA W+'+ll-i (m+'+'1-m+i+lm+im+i1l1
n	 l	 nn	 J 	 nA;+i-1	 nAm+i m+iKm+i-11 m+i-lxo

l	
m+i

O
 m+i

+ m+i+lAm+i(m+ix + m+iK I	
lx 

J 
exp	

nn	
t	 (3.10)n m+i m+i o m+i m+i-1 m+i-1 o 	 m+s+16mfi+l i

n n

This solution is stable. At t - 0,

m+ixi(0) m+i x0

m+i+1x1 (0) _ m+i+lAm+i+l 1 m+i+lAI	 lx
n	 n n	 ,-	 n m+i m+i o (3.11)

A similar analysis of the i + l th boundary-layer system shows that its

solutior is stable with

	

l xi+1 ( )	 lx
m+i	 s m+i o

	

m+i+nyi+l(^)	 (m+i+nAm+i+l)-i m+i+nA'
	 m+1xo
	 (3.12)

From (3.11) and (3.12)

x1(0) . x i+1
(m )	 (3.13)

We have now shown that all boundary layers are asymptotically stable and

that (3.13) holds for all i - 0, 1,	 n - m - 1. Application of elementary

singular perturbation theory then completes the proof of the theorem [c.f. 1-4

and 10). It remains only to find a representation for the boundary-layer cor-

rection terms m+nxb(t).

In the MAE method, uniformly convergent approximations for the fast vari-

ables are obtained by forming composite solutions [c.f. 6, 7, and 101. Since

9



there are many ways of doing this, the function m+
^xb ( t) is not unique. In

the present analysis, we adopt the additive composition. To obtain the addi-

tive composition, the reduced and boundar -layer solutions are added and the

common parts (i.e., the terms that cancel out in the matching) are subtracted

out. Tnis gives

n-m	 n-m-1
xa (t) - xo (t) +	 xi(t) -	 xi(0)	 (3.14)

i=1	 i=0

From (3.2), (3.4), and (3.10),

mx
i (0)	 1 xo ; i - 0, ..., n - m

IDx
i (t) - 1xo; i - 1, •••, n - m

Thus, for the slow variables

mxa(t) - mxo(t)

	
(3.15)

and, as expected, no boundary- layer corrections are needed.

For the fast variables, (3.2), (3.4), and (3 . 10) give

jxi (0) - jxU ; j s m + i

j
xi (t) - 

xo; 
j < m + i

Thus, from (3.14)

a	 o	 j'-m 	 i	 j -m-1
j x (t)	 j x (t) + ^ j x (t) -	 ^	 j xi (0); j = m + 1, •••, n	 (3.16)
j	 j	 i0 1 j	 i-o j

and the boundary- layer corrections are

j-m	 j -m-1^xb (t) 	 ^ jx i (t) -	 ^,	 j x i (o); j - m + i, ..., n
i=1	 i-0

I

4
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or, using (3.13),

j-m	 1

jx
b(t) - i_

l 
[J xi (t) - jxi (•)

J
 ; j - m + 1, .. -, n	 (3.17)

so that only the exponential terms of the boundary-layer solutions appear in

i
^nx (t). From (3.17) and ( 3.10) the boundary-layer corrections may be writ-

ten as

m+lxb(t) - m+1Qm+1 m+1V(t)
n	 n n	 n

(3.18)

where =+IQM+l is an n - m x n - m lower triangular matrix whose components

qij are given by

q i j - 0; j > i

m+j x0 + m+j Km+j-1 m+j-l xo' j	 1•	
n - m - 1

q -ij
x + 1 n n-1 n-1Axo'	 n - mn o a

nn

	

- - Ri- ( m+ +l am+ +1	
j

-1 m+ +lAmrj m+ x + m+j K I	
lx	 i >

q	 j	
j	

jij	 t	 n n	 ,	 n m+j tm+j o m+j m+j - 1 m+j -1 0,}

where R  W denotes the 
ith 

row of A and where M+I V(t) is a vector whose

elements are scalar, stable, exponential functions, namely

m+1Dm+1

(3.19)

m+IV t) .
n

exp 
u n t

m+2Dm+2 E

nn	 j

m+iDMO.
n n	 t

exp m+i+nDm+i+l Ei)

t
exp ann n-m

E

(3.20)

where ( 3.8) was used.

11
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IV. DISCUSSION AND APPLICATIONS

In the previous section, we have obtained an approximate solution to the

cr h order system (1.2). This solution requires solving an mth order (m < n)

system and a sequence of n - m scalar boundary -layer equations. Solution of

the boundary-layer equations involves finding the determinants and inverses of

the matrices m+nA^i , 1 = 1,	 , n - m. Thus, the method in effect splits

up a higher-order problem into several problems of lower order. By the

theorem of section 2, the method gives a uniform approximation.

Although the system ( 1.2) has a rather special form which may not be ex-

pected to occur frequently in applications, the method developed here may be

used to obtain approximate solutions to general linear systems. Suppose we

have a system

	

d = Ay ; y (0) = yo 	(4.1)

with (2.1) satisfied for some m < n, and, in addition,

a
nn

	 I m+16m+ 11
I 

= 

InDnI , 
In-1 Dn- l I 	... , 	 > 0

	 (4.2)
nn	 nn	 nn

with the first boundary-layer solution decaying faster than any mode of the

other solution. Then we proceed by premultiplying the left-hand side of

(4.1) by E, thereby obtaining a problem of the form (1.2). We have thus

inserted the "small" parameter to create artificially a singular perturbation

problem. Such a procedure has been adopted by several researchers in flight

vehicle trajectory optimization and has proved to be quite successful [10, 11,

12, 13, 14, 151. In particular, Calise [11, 121 has utilized the multiple

boundary-.ayer approach we are using here. The final step of the procedure

is to set e = 1, its proper value. From (3.20) this gives

12	
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(4.3)
m+1V(t)

i+16m+1
n nexp m+2
Dm+2 t
nn

m+iDm+i
n n

exp 
m+i

+1Dm+i+1 t
n n

exp(ann t)

The relations (4.2) ensure that the corrections to the reduced solution from

the ith boundary layer decay faster than do those from the i - 11h

boundary layer.

In specific applications, experience with the system under consideration

often shows the proper choice of slow variables and ordering of fast variables.

In geneti c . the following procedure may be adopted. First, search the diagonal

elements aii of A for the one with the smallest value (i.e., the one with

the largest absolute value among those that are negative); relabel the equa-

tions such that this element appears as ann. Next, compute aii
ain
for

ni nn

all i and relabel the equations such that the a ii for which

aii ain is largest appears as an-1 n-1' Then, continue on in this way
ni nn	 '

until 
am+l,m+l 

is selected. After premultiplying by E, the results of

section 3 may be applied.

V. EXAMPLE

Since a third-order system is the lowest order system that can exhibit

all the features of the method, we will illustrate the method by using it to

obtain an approximate solution of

13



= a11J1 + a12Y2 + a13Y3; yl(0) - a
dt

dUdt  = a21Y1 + a22Y2 + a23J3; J2(0) - B

dt= a313 1 + a32Y2 + a33Y3; y 3(0) - Y

It is assumed that (2.1) and (4.2) hold for m = 1, i.e.,

3D3 = a22a33 - a23a 32	 0

3D3 = a3 3 < 0

I a33I > ja22 a33 - a23a321

and, in addition, that

1a22a33 - a23a321 ' IDI

where D is the determinant of A. The appropriate singular perturbation

formulation of the problem is then

d 
= allxl + 812x2 + a13x3; x1(0) = a

E d = a21x1 + a22x2 + a23x3; x2(0) - B

E2 4EI 
= a3lxl + a 32x2 + a33x3; x3(0) = Ydt

We will solve this problem both by direct application of the MAE method and by

employing the formulas derived in section 3.

First, the MAE method will be illustrated. The reduced problem is

0

dtl = a11x00
+ al2x2 + a13x3

0	 0	 0
0 = a21 x 1 + a22x2 + a23x3

0 
= a3lx0 + 

a 32x2 + a33x3

with solution

14
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where Mij is the minor of aij and C O is a constant to be eetermined by

the matching condition. At t = 0,

x°(0) = CO; x2 ( 0) _ - M^^ 
CO; x3(0) = MU Co

The first boundary-layer system is, to zeroth order,

1
d1 = 0
dT 1

i

d = a21x1 + a22x2 + a23x3

0 = a31xi + a32x2+ 	 a33x3

where T1 = t/E. The solution in terms of constants of integration

C1 = x1(0) and C2 = x2(0) is

xi = C1

X 
= 

(Cl + M
11 

C1 expla33 

^ 1 J 1"1 11 
C1

Mil
X3

1	 a32
 
=	 a33 

IC2 + 
M11 C

1 ) expla
33 X1 1 + 1"111 C1

At T1=0,

1	 1	 1	 1	 1	 a32	 1	 M12	 1	 x113	 1X 1(0 ) = C l; x2 (0) = C 2 ; x 3 (0) _ - 
a 3 3 C2 + 11 1 1 

C1 
+1,1 1 1 C1

and for T 1 - -,

xi (-) = C1 ; x2 (m) _ - M11 C1 x3 (0D) = Mil C1

The zeroth order of the second boundary -layer system is given by

R

i s 	 tit i^3;^>>^t'^^[hII;ITY OF THE
PAGE IS POOR



z
d0;	 xi (0) = a

2

d 2 
0;	 x2 (0) = S

3 
= a31x1 + a32x2 + a33x3; x3(0) = Y

2

where T2 - t /E 2 . Note that since this is the last boundary layer it is re-

quired to satisfy the initial conditions. The solution is

xj = a

X2 = S

x3	
lY + 

a33 (a31 a + a32 s)1 exp(a33 T 2 )	 a33 (a31a + a320)

As T2 -*00:

x1 (°°) = a; x2(°D )	 S; x3(-) _ - a33 (a 31 a + a320)

Next, the matching conditions are applied to determine the constants of

integration. For matching between the first and second boundary layers we

require that xi(W ) = x i (0) for i = 1, 2, 3; this gives C1 = a and C2 = B•

Similarly, the matching condition between the outer solution and the first

boundary layer is xi(m) = xi(0) for i = 1, 2, 3 which gives Co = a. From

(3.15) and (3.17) the additive composite solution for y is

y 1 = a exp D t
Ml 1

Y2 = - Ml 1 a expl MDl t] + I S + 
Mil a) exp l a3 3 tJ

Y3 = Mil a expl M11 t]	 a33 i s + MilaJ exp `a33 
ti

+ [Y + a33 (aSla + a32 S)I exp (a33 t)

which provides a uniform approximation to the exact solution of the system.
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We now solve the example by employing the results of section 3. The

first step is to solve the reduced system, which we have done previously. It

remains to obtain the boundary-layer correction terms. From (3.19),

912 0

911 ' 2x0 + 2K 11x0

922 0 3x0 + a33 3A2 2x0

921 m - R1 
^t 3A3] -1 `3A22x0 + 2Ki lx0]^

From (3.5),

-13D32 1	 r2 1	 3(3 31	 3 1l
2K1	 2A1 _ 2A3 3A3	 1 1 2D3

(a21 - a23 a33 a31, M3

M12	

J11

M11

Thus,

412 ° 0

911 a B+
M12 a
M11

922 ` Y + a33 (ayla + a226)

921 - - Rl {a33
13 a32(6 + M11 

a)}	
a33 ts + M11 a)

From (3.20),

(tlexp 	)
3 E

3V(t)

exp a33 t)



Then from (3.18)

rs + M12 a) eXp (M11 tj

l	 Mil 11	 Ilta33 E J
3x (t) a	

/(	 ))	
rrMI I	 )	 11

-	 IS + M aI exp1	
e, + LY + a33 ( a31a + a32s)Jexp^a33 E2)

When 3xb (t) is added to gx o (t) and E is set to 1, the desired approxima-

tion results.
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